Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 91
  • Home
  • Print this page
  • Email this page
Year : 2021  |  Volume : 18  |  Issue : 1  |  Page : 32

Ions release evaluation and corrosion of titanium mini-implant surface in response to orthokin, oral B and chlorhexidine mouthwashes

1 Department of Orthodontics, Dental Research Center, School of Dentistry, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Ortodontocs, Dental Students' Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Dr. Atefe Ahmadvand
Post Graduate Student, Dental Students' Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1735-3327.316649

Rights and Permissions

Background: The present study was performed to evaluate the effect of three types of mouthwash (orthokin, oral B and chlorhexidine [CHX]) on releasing of aluminum (Al), Titanium (Ti) and Vanadium (V) ions from titanium mini-implants (TMIs). Materials and Methods: In this in vitro, experimental study, a total of 40 TMIs were divided equally into four groups (10 TMI in each group) and then were immersed into Orthokin, Oral B, CHX, and artificial saliva, as a control. The experiments were performed for 21 days as following groups 1–7 days, 8–14 days, and 15–21 days. The inductively coupled plasma-optical emission spectrometry method was used to assess releasing metal ions after immersion in the storage media. In addition, before and after each experiment, the corrosion of TMIs was assessed using a scanning electron microscope (SEM). All results were analyzed using Kruskal–Wallis, followed by Bonferroni-adjusted Mann–Whitney U-test at 0.05 level of significance. Results: Our data showed that the maximum concentration of released Al was in the 1st week of exposure to Orthokin and Oral B (202.3 ± 68.5 and 72.3 ± 15.2 μg/L, respectively). Oral B exposure of TMI also caused to releasing of Ti to 128.1 ± 42.5, 54 ± 19.4 and 22 ± 6 μg/L for 1–7 days and 8–14 days and 15–21 days, respectively. Orthokin and CHX also induced the release of Ti more than artificial saliva (P < 0.05). In addition, there was no significant statistical difference between any types of mouthwashes and artificial saliva in releasing V. The results of SEM images also confirmed the corrosion effects of mouthwashes. Conclusion: The factors of exposure time and mouthwash type influenced the pattern of releasing Al and Ti as well as corrosion level.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded208    
    Comments [Add]    

Recommend this journal