Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 62
  • Home
  • Print this page
  • Email this page
Year : 2022  |  Volume : 19  |  Issue : 1  |  Page : 56

An in vitro micro-CT assessment of bioactive restorative materials interfacial adaptation to dentin

1 Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhrapradesh, India
2 Department of Prosthodontics, Sibar Dental College and Hospital, Takkellapadu, Guntur, Andhrapradesh, India

Correspondence Address:
Dr. Jyothi Mandava
Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Rushikonda, Visakhapatnam - 530 045, Andhra Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1735-3327.351345

Rights and Permissions

Background: The background of this study was to improve the longevity of a restoration and optimal adaptation of restorative material to the prepared cavity walls is crucial. The study aimed to evaluate the interfacial adaptation of Activa, Micron, and Predicta bulk bioactive restorative materials to coronal dentin using micro-computed tomography (CT) analysis. Materials and Methods: In this in vitro micro-CT assessment study, Class II mesio- and disto-occlusal cavities were prepared on 60 extracted human mandibular molar teeth. After etching and bonding procedures, all the mesial cavities (n = 60) were restored with Tetric N-Ceram and the disto-occlusal cavities with Activa or Micron or Predicta bioactive (n = 20 each) restoratives. Interfacial gap percentages were evaluated under micro-CT before (baseline) and after thermo-mechanical load cycling (TMC). Acquired data were analyzed statistically using one-way analysis of variance, Paired t-test, and Tukey's multiple post hoc procedures, at P < 0.05 level of significance. Results: The interfacial gap percentages were lowest for Predicta bioactive and highest for the Micron group (P < 0.05). The number of gaps increased significantly after TMC in all the groups (P < 0.05). The adaptation of tested materials was inferior to axial wall and pulpal floor, whereas considerably better adaptation was observed on buccal and lingual walls. Conclusion: Predicta bioactive followed by Activa bioactive has shown superior interfacial adaptation, whereas Micron bioactive demonstrated maximum microgaps compared to nanohybrid composite. Artificial aging with TMC has a negative influence on the internal adaptation of all tested materials.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded234    
    Comments [Add]    

Recommend this journal