Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 625
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2023  |  Volume : 20  |  Issue : 1  |  Page : 84

Phosphoric acid treatment enhances adaptation of glass-ionomer cement to bioceramic sealer-conditioned dentin


Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India

Correspondence Address:
Dr. Nandini Suresh
Department of Conservative Dentistry and Endodontics, Faculty of Dentistry, Meenakshi Academy of Higher Education and Research, MAHER University, No. 1, Alapakkam Main Road, Maduravoyal, Chennai - 600 095, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-3327.382137

Rights and Permissions

Background: This study evaluated the interface between fresh eugenol/bioceramic sealer-conditioned coronal dentin and high-viscous glass-ionomer cement (HVGIC), treated with various dentin conditioners (saline, 10% polyacrylic acid, and 37% phosphoric acid). Materials and Methods: Standard endodontic access preparation and instrumentation were done in 21 freshly extracted mandibular molar teeth in this in vitro study. Teeth were divided into two interventional groups (n = 9/group), based on the type of sealer (zinc oxide eugenol [ZOE]/bioceramic [BioRoot RCS] sealer) used for obturation. Samples were further subdivided based on the type of dentin-conditioning procedures performed (saline/10% polyacrylic acid/37% phosphoric acid). Post dentin conditioning, the access cavity was sealed with HVGIC. Later, material-dentin interfacial analysis and elemental analysis were done using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. Results: The interfacial SEM images of HVGIC layered over B-RCS/ZOE sealer-conditioned dentin, treated with saline, showed predominantly adhesive debonding failures, whereas cohesive debonding was observed with polyacrylic and phosphoric acid. In the elemental analysis, the intensity of zirconium (depicting the residue of B-RCS)/zinc (depicting ZOE sealer) was very high on the dentin side treated with saline, in comparison to the dentin treated with polyacrylic and phosphoric acid. Furthermore, the intensity of elements from HVGIC was low on the dentin side of the groups with saline, whereas these elements showed maximum penetration into the dentin when treated with phosphoric acid. Conclusion: Conditioning of the endodontic access cavity using 37% phosphoric acid immediately postobturation resulted in higher penetration of HVGIC into the dentin, in comparison to the other dentin conditioners.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed580    
    Printed42    
    Emailed0    
    PDF Downloaded65    
    Comments [Add]    

Recommend this journal